Abstract
Copper is extensively used in a wide range of industrial and daily-life applications, varying from heat exchangers to electrical wiring. Although it is protected from oxidation by its native oxide layer, when subjected to harsh environmental conditions─such as in coastal regions─this metal can rapidly degrade. Therefore, in this study, we analyze the potential use of carbon nanoparticle coatings as protective barriers due to their intrinsic hydrophobic wetting behavior. The nanocarbon coatings were produced via electrophoretic deposition on Cu platelets and characterized via scanning electron microscopy, confocal laser scanning microscopy, and sessile drop test; the latter being the primary focus since it provides insights into the wetting behavior of the produced coatings. Among the measured coatings, graphite flakes, graphene oxide, and carbon nanotube (CNT) coatings showed superhydrophobic behavior. Based on their wetting behavior, and specifically for electrical applications, CNT coatings showed the most promising results since these coatings do not significantly impact the substrate's electrical conductivity. Although CNT agglomerates do not affect the wetting behavior of the attained coatings, the coating's thickness plays an important role. Therefore, to completely coat the substrate, the CNT coating should be sufficiently thick─above approximately 1 μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.