Abstract

In this study, the feasibility of fabricating protein-based bionanocomposite films (PBBFs) was analysed by applying capsicum leaf protein (CLP) and cellulose nanofiber (CNF) as raw materials. The effects of different amounts of CNF (solid content 2%) on physicochemical and material properties of PBBFs were investigated. The results showed nanoscale CNFs exhibited good interfacial compatibility with CLP. The hydroxyl groups on the CNF surface promoted the association of hydrogen bonds between CLP, glycerol and CNF, which improved the crystal structure and thermal stability of PBBFs. Concurrently, the mechanical properties and hydrophobicity of PBBFs are also enhanced. PBBFs with 60% CNF content have maximum flexibility and hydrophobicity. All PBBFs exhibited ultraviolet barrier performance, indicating that PBBFs had potential application prospects in the development of degradable food packaging materials. The results of the present study can provide a theoretical basis for the efficient utilisation of capsicum planting waste while improving the ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call