Abstract

To determine the feasibility of balanced steady-state free precession (b-SSFP) imaging for measuring hepatic steatosis in obese children and adolescents, using proton magnetic resonance spectroscopy (1H MRS) as reference standard. 182 obese Chinese paediatric patients underwent conventional T1-weighted dual echo MRI, 1H MRS and b-SSFP imaging for non-invasive assessment of hepatic steatosis. There was a strong positive correlation between liver fat fraction (FF) on T1-weighted dual echo MRI and 1H MRS-determined liver fat content (LFC) (r = 0.964, p < .001), and a strong negative correlation between the ratio of liver signal intensity (SI) to spleen SI (L/S) on b-SSFP and LFC (r = -0.896, p < .001). ROC curve analysis based on a diagnostic threshold of 1H MRS-determined LFC >50 mg/g (>5 % by wet weight) showed areas under the curves for FF and L/S at 0.989 (0.976-1.000) and 0.926 (0.888-0.964), respectively. Optimal FF and L/S cut-off values identified patients with hepatic steatosis with 97.9 % and 86.5 % sensitivity and 93.4 % and 93.4 % specificity, respectively. Following further validation, b-SSFP at 1.5T has potential as a feasible technique for evaluation of hepatic steatosis in obese paediatric patients with limited breath-holding capacity. • L/S on b-SSFP images closely correlated with 1 H MRS-determined LFC. • b-SSFP has high diagnostic accuracy for hepatic steatosis in obese children. • 100% of obese paediatric subjects are imaged successfully using b-SSFP sequence. • b-SSFP has potential to evaluate hepatic steatosis in children with poor breath-hold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call