Abstract

PurposeTo investigate an augmented reality (AR)–guided endovascular puncture to facilitate successful transjugular intrahepatic portosystemic shunt (TIPS). Materials and MethodsAn AR navigation system for TIPS was designed. Three-dimensional (3D) liver models including portal and hepatic vein anatomy were extracted from preoperative CT images. The 3D models, intraoperative subjects, and electromagnetic tracking information of the puncture needles were integrated through the system calibration. In the AR head-mounted display, the 3D models were overlaid on the subjects, which was a liver phantom in the first phase and live beagle dogs in the second phase. One life-size liver phantom and 9 beagle dogs were used in the experiments. Imaging after puncture was performed to validate whether the needle tip accessed the target hepatic vein successfully. ResultsEndovascular punctures of the portal vein of the liver phantom were repeated 30 times under the guidance of the AR system, and the puncture needle successfully accessed the target vein during each attempt. In the experiments of live canine subjects, the punctures were successful in 2 attempts in 7 beagle dogs and in 1 attempt in the remaining 2 dogs. The puncture time of needle from hepatic vein to portal vein was 5–10 s in the phantom experiments and 10–30 s in the canine experiments. ConclusionsThe feasibility of AR-based navigation facilitating accurate and successful portal vein access in preclinical models of TIPS was validated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.