Abstract
BackgroundNew approaches to link health surveillance data with environmental and population exposure information are needed to examine the health benefits of risk management decisions.ObjectiveWe examined the feasibility of conducting a local assessment of the public health impacts of cumulative air pollution reduction activities from federal, state, local, and voluntary actions in the City of New Haven, Connecticut (USA).MethodsUsing a hybrid modeling approach that combines regional and local-scale air quality data, we estimated ambient concentrations for multiple air pollutants [e.g., PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), NOx (nitrogen oxides)] for baseline year 2001 and projected emissions for 2010, 2020, and 2030. We assessed the feasibility of detecting health improvements in relation to reductions in air pollution for 26 different pollutant–health outcome linkages using both sample size and exploratory epidemiological simulations to further inform decision-making needs.ResultsModel projections suggested decreases (~ 10–60%) in pollutant concentrations, mainly attributable to decreases in pollutants from local sources between 2001 and 2010. Models indicated considerable spatial variability in the concentrations of most pollutants. Sample size analyses supported the feasibility of identifying linkages between reductions in NOx and improvements in all-cause mortality, prevalence of asthma in children and adults, and cardiovascular and respiratory hospitalizations.ConclusionSubstantial reductions in air pollution (e.g., ~ 60% for NOx) are needed to detect health impacts of environmental actions using traditional epidemiological study designs in small communities like New Haven. In contrast, exploratory epidemiological simulations suggest that it may be possible to demonstrate the health impacts of PM reductions by predicting intraurban pollution gradients within New Haven using coupled models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.