Abstract

The feasibility of obtaining 75As and 121/123Sb NMR spectra for solids at high and moderate magnetic field strengths is explored. Arsenic-75 nuclear quadrupolar coupling constants and chemical shifts have been measured for arsenobetaine bromide and tetraphenylarsonium bromide. Similarly, 121/123Sb NMR parameters have been measured for tetraphenylstibonium bromide and potassium hexahydroxoantimonate. The predicted pseudo-tetrahedral symmetry at arsenic and the known trigonal bipyramidal symmetry at antimony in their respective tetraphenyl-bromide “salts” are reflected in the measured 75As and 121Sb nuclear quadrupole coupling constants, CQ(75As)=7.8MHz and CQ(121Sb)=159MHz, respectively. Results of density functional theory quantum chemistry calculations for isolated molecules using ADF and first-principles calculations using CASTEP, a gauge-including projector augmented wave method to deal with the periodic nature of solids, are compared with experiment. Although the experiments can be time consuming, measurements of 75As and 121Sb NMR spectra (at 154 and 215MHz, respectively, i.e., at B0=21.14T) with linewidths in excess of 1MHz are feasible using uniform broadband excitation shaped pulse techniques (e.g., WURST and WURST-QCPMG).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call