Abstract

The aim of this study was to investigate whether the alterations of topological properties can facilitate the diagnosis of generalized anxiety disorder (GAD). Twenty first-episode drug-naive Chinese individuals with GAD and twenty age-sex-education-matched healthy controls (HCs) were included in the primary training set, and the results of which were validated using nineteen drug-free patients with GAD and nineteen unmatched HCs. Two 3 T scanners were used to acquire T1, diffusion tensor, and resting-state functional images. Topological properties were altered in the functional cerebral networks among patients with GAD, but not in the structural networks. Using the nodal topological properties in the anti-correlated functional networks, machine learning models distinguished drug-naive GADs from their matched HCs independent of the type of kernels and the amount of features. Although the models built with drug-naive GADs failed to distinguish drug-free GADs from HCs, the features selected for those models could be used to build new models for distinguishing drug-free GADs from HCs. Our findings suggested that it is feasible to utilize the topological characteristics of brain network to facilitate the diagnosis of GAD. However, further research with decent sample sizes, multimodal features, and improved modeling methods are needed to build more robust models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call