Abstract

We have evaluated the feasibility of using Empore solid-phase extraction (SPE) membranes as an alternative to conventional techniques for sampling fine airborne particulate matter (PM), including nanoparticles, utilizing a scanning mobility particle sizer (SMPS) and a condensation particle counter to evaluate their efficiency for trapping fine particles in the 10-800 nm size range. The results demonstrate that the membranes can efficiently trap these particles and can then be conveniently packed into an extraction cell and extracted under matrix solid-phase dispersion (MSPD) conditions. The potential utility of sampling PM using Empore membranes followed by dynamic subcritical water extraction (DSWE) for fast, efficient, class-selective extraction of polycyclic aromatic hydrocarbons (PAHs) associated with the particles, prior to changing the solvent and analysis by GC/MS, was then explored. The performance of the method was tested using National Institute of Standards and Technology (NIST)-certified "urban dust" reference material (SRM 1649a) and real samples collected at a site in central Rome with heavy road traffic. The method appears to provide comparable extraction efficiency to that of conventional techniques and with using GC/MS, detection limits ranged in the few picograms per cubic meter level. Sampling PM by Empore membranes may reduce the risks of losses of semivolatile compounds, while allowing relatively high sampling flow rates and safe sample storage. Moreover, the combination of MSPD with DSWE permits specific fractions of the PM components to be eluted, thereby generating clean extracts and reducing both analysis time and sample manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.