Abstract
BackgroundThe management of the cardio-respiratory motion of the target and the reduction of the uncertainties related to patient's positioning are two of the main challenges that stereotactic arrhythmia radio-ablation (STAR) has to overcome. A prototype of a system was developed that can automatically acquire and interpret echocardiographic images using an artificial intelligence (AI) algorithm to calculate cardiac displacement in real-time.MethodsWe conducted a single center study enrolling consecutive patients with a history of ventricular arrhythmias (VA) in order to evaluate the feasibility of this automatic acquisition system. Echocardiographic images were automatically acquired from the parasternal and apical views with a dedicated probe. The system was designed to hold the probe fixed to the chest in the supine position during both free-breathing and short expiratory breath-hold sequences, to simulate STAR treatment. The primary endpoint was the percentage of patients reaching a score ≥2 in a multi-parametric assessment evaluating the quality of automatically acquired images. Moreover, we investigated the potential impact of clinical and demographic characteristics on achieving the primary endpoint.ResultsWe enrolled 24 patients (63 ± 14 years, 21% females). All of them had a history of VA and 21 (88%) had an ICD. Eight patients (33%) had coronary artery disease, 12 (50%) had non-ischemic cardiomyopathy, and 3 had idiopathic VA. Parasternal, as well as apical images were obtained from all patients except from one, in whom parasternal view could not be collected due to the patient's inability to maintain the supine position. The primary endpoint was achieved in 23 patients (96%) for the apical view, in 20 patients (87%) for the parasternal view, and in all patients in at least one of the two views. The images' quality was maximal (i.e., score = 4) in at least one of the two windows in 19 patients (79%). Atrial fibrillation arrhythmia was the only clinical characteristics associated with a poor score outcome in both imaging windows (apical p = 0.022, parasternal p = 0.014).ConclusionsThese results provide the proof-of-concept for the feasibility of an automatic ultrasonographic image acquisition system associated with an AI algorithm for real-time monitoring of cardiac motion in patients with a history of VA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.