Abstract

Scan time reduction is necessary for volumetric acquisitions to improve workflow productivity and to reduce motion artifacts during MRI procedures. We explored the possibility that Compressed Sensing-4 (CS-4) can be employed with 3D-turbo-field-echo T1-weighted (3D-TFE-T1W) sequence without compromising subcortical measurements on clinical 1.5T MRI. Thirty-three healthy volunteers (24 females, 9 males) underwent imaging scans on a 1.5T MRI equipped with a 12-channel head coil. 3D-TFE-T1W for whole-brain coverage was performed with different acceleration factors, including SENSE-2, SENSE-4, CS-4. Freesurfer, FSL's FIRST, and volBrain packages were utilized for subcortical segmentation. All processed data were assessed using the Wilcoxon signed-rank test. The results obtained from SENSE-2 were considered as references. For SENSE-4, the maximum signal-to-noise ratio (SNR) drop was detected in the Accumbens (51.96%). For CS-4, the maximum SNR drop was detected in the Amygdala (10.55%). Since the SNR drop in CS-4 is relatively small, the SNR in all of the subcortical volumes obtained from SENSE-2 and CS-4 are not statistically different (P > 0.05), and their Pearson's correlation coefficients are larger than 0.90. The maximum biases of SENSE-4 and CS-4 were found in the Thalamus with the mean of differences of 1.60ml and 0.18ml, respectively. CS-4 provided sufficient quality of 3D-TFE-T1W images for 1.5T MRI equipped with a 12-channel receiver coil. Subcortical volumes obtained from the CS-4 images are consistent among different post-processing packages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call