Abstract

The conventional protocol for whole-body positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose (FDG) requires a total acquisition time of 40-60 min, which is inconvenient for many oncological patients owing to fatigue and discomfort. This study examined the feasibility of a short protocol for whole-body PET. A phantom containing six "hot" spheres of gradually increasing diameter (10-38 mm) was imaged using a dedicated PET scanner for 20, 40, 60, 80, 120 and 600 s at various count rates. Thirty-four patients with various neoplasms underwent whole-body emission scans for 1 min per bed position 1 h after intravenous injection of 370 MBq of FDG (short protocol). A standard simultaneous transmission-emission acquisition for 10 min per bed position was performed thereafter. The images were reconstructed using an iterative algorithm. At a count rate of 40 kcps, which is close to the average count rate obtained in a whole-body FDG PET study, the 60-s image visualised five spheres, of which the smallest was 13 mm in size. Despite the better image quality, lesion detection was not improved in images acquired for more than 60 s (80-600 s). Only three of the six spheres could be detected in images acquired for less than 60 s. In the patient study, the standard protocol visualised 120 tumour lesions, of which 93 (78%) could be detected using the short protocol. Among the non-visualised lesions, 22 (82%) were < or =1.5 cm in size and 17 (63%) were lymph nodes. It is concluded that the proposed short protocol for whole-body FDG PET has a reasonably high detection rate and may be suitable for patients who are unable to undergo scanning for a prolonged period. It may also be useful as a pre-scan guide before a standard whole-body acquisition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call