Abstract

Background: Oral squamous cell carcinoma (OSCC) is increasing at an alarming rate particularly in low-income countries. This urges for research into noninvasive, user-friendly diagnostic tools that can be used in limited-resource settings. This study aims to test and validate the feasibility of e-nose technology for detecting OSCC in the limited-resource settings of the Sudanese population. Methods: Two e-nose devices (Aeonose™, eNose Company, Zutphen, The Netherlands) were used to collect breath samples from OSCC (n = 49) and control (n = 35) patients. Patients were divided into a training group for building an artificial neural network (ANN) model and a blinded control group for model validation. The Statistical Package for the Social Sciences (SPSS) software was used for the analysis of baseline characteristics and regression. Aethena proprietary software was used for data analysis using artificial neural networks based on patterns of volatile organic compounds. Results: A diagnostic accuracy of 81% was observed, with 88% sensitivity and 71% specificity. Conclusions: This study demonstrates that e-nose is an efficient tool for OSCC detection in limited-resource settings, where it offers a valuable cost-effective strategy to tackle the burden posed by OSCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.