Abstract
The applicability of a polyether ether ketone locking compression plate (PEEK LCP) fabricated using FDM (fused deposition modeling)-based 3D printing to treat actual patients was studied. Three different tests-bending, axial compression, and axial torsion-were conducted on tibial non-osteoporotic comminuted diaphyseal fracture samples fixed with the commercial titanium alloy LCP and 3D-printed PEEK LCP. Comparing the outcomes of these tests revealed that the commercial titanium alloy LCP underwent plastic deformation in the bending and axial torsion tests, though the LCP did not fail even when an external force greater than the maximum allowable load of the tibia fixture of the LCP was applied. Elastic deformation occurred in the 3D-printed PEEK LCP in the bending and axial torsion tests. However, deformation occurred even under a small external force, and its stiffness was 10% compared to commercial titanium alloy LCP. Thus, 3D-printed PEEK LCP can be applied to the fracture conditions in non-weight-bearing regions. The experimental results reveal detailed insights into the treatment of actual patients by considering the stiffness and high toughness of 3D-printed PEEK LCP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.