Abstract

In this paper, a rotordynamic experiment on a compressor rotor system is presented and the feasibility of gas foil bearings with inhomogeneous bump foils is verified. A push–pull device is designed to obtain the stiffness curve and the nominal clearance of foil bearings. Operating points and dynamic coefficients of the rotor system at each rotating speed are predicted. In rotordynamic analysis, an alternative model of the impeller is proposed and the critical speed is predicted by employing the finite element method, in which the dynamic coefficients of inhomogeneous foil bearings are taken into account. Compared with the experimental result, the accuracy of the prediction for the critical speed is verified to be about 14% error. Two sets of foil bearings with 22 and 41 μm nominal clearance are manufactured and tested. Test results indicate that the vibration amplitude can be greatly reduced by diminishing the bearing clearance. When foil bearings with 22 μm clearance are used, the high-order harmonic frequencies of rotor vibration are significantly inhibited, and the amplitude of the rotating frequency is obviously restricted. Thus, the foil bearing with inhomogeneous bump foils tested in this paper can meet the speed requirement of the compressor when the nominal clearance is set at 22 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call