Abstract

AbstractThe optimization of control systems under the presence of safety constraints and input constraints frequently involves the decomposition into a sequence of quadratic programs (QPs) facilitated by the utilization of high‐order control barrier function (HOCBF). When the safety constraint conflicts with the input constraint, however, it leads to infeasibility within the QPs. In this article, a feasibility‐guaranteed QP is proposed to tackle the challenge posed by the conflict between HOCBF constraint and input constraint. Firstly, the classical QP is added with a feasibility constraint which is derived from input constraint and HOCBF constraint, where the parameter of feasibility constraint is updated via a new QP obtained by control sharing property. Then, Type‐2 HOCBF is investigated for the system with multiple HOCBF constraints, which effectively confines the system within a single HOCBF at the current time step. Finally, the efficacy of this approach is demonstrated through the application of obstacle avoidance in a 3‐DOF robot system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.