Abstract

As new technologies permit the generation of hitherto unprecedented volumes of data (e.g. genome-wide association study data), researchers struggle to keep up with the added complexity and time commitment required for its analysis. For this reason, model selection commonly relies on machine learning and data-reduction techniques, which tend to afford models with obscure interpretations. Even in cases with straightforward explanatory variables, the so-called ‘best’ model produced by a given model-selection technique may fail to capture information of vital importance to the domain-specific questions at hand. Herein we propose a new concept for model selection, feasibility, for use in identifying multiple models that are in some sense optimal and may unite to provide a wider range of information relevant to the topic of interest, including (but not limited to) interaction terms. We further provide an R package and associated Shiny Applications for use in identifying or validating feasible models, the performance of which we demonstrate on both simulated and real-life data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.