Abstract

BackgroundGastric cancer (GC) is a leading cause of cancer death and an important barrier to increasing life expectancy in China. Early detection of GC can significantly reduce its mortality rate. MethodsA new plasma-based multiplex DNA methylation assay combining simultaneous detection of three biomarkers (KCNQ5, C9orf50 and CLIP4) and one control gene (ACTB) was developed. It was used to examine 12 paired tissue samples and a training cohort of 151 plasma samples. Its performance was subsequently confirmed in validation cohort 1 (n = 105) and validation cohort 2 (n = 139). ResultsThree methylation markers showed significantly higher methylation levels in GC tissues than in paired adjacent tissues. The assay showed a sensitivity of 67.9 % with a specificity of 86.6 % for GC detection in the training cohort, and the AUC was 0.786 (95 % CI: 0.701–0.855). The methylation levels in GC patients were significantly higher than those in benign gastric tumors and in control group. Meanwhile, the assay achieved a sensitivity of 65.5 % with a specificity of 90.0 % in the validation cohort 1, and the AUC was 0.805 (95 % CI: 0.716–0.876). In the validation cohort 2, its sensitivity and specificity were 73.7 % and 84.1 %, respectively, and the AUC was 0.851 (95 % CI: 0.776–0.909). ConclusionThe plasma-based multiplex DNA methylation assay was highly specific for GC early detection. It has the potential to become an alternative approach to improve diagnosis of GC in the clinics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.