Abstract

Recycling carbon resources from discarded cyanobacteria is a worthwhile research topic. This study focuses on the use of dielectric barrier discharge (DBD) plasma technology as a pretreatment for anaerobic fermentation of cyanobacteria. The DBD group (58.5 W, 45 min) accumulated the most short chain fatty acids (SCFAs) along with acetate, which were 3.0 and 3.3 times higher than the control. The DBD oxidation system can effectively collapse cyanobacteria extracellular polymer substances and cellular structure, improve the biodegradability of dissolved organic matter, enrich microorganisms produced by hydrolysis and SCFAs, reduce the abundance of SCFAs consumers, thereby promoting the accumulation of SCFAs and accelerating the fermentation process. The microcystin-LR removal rate of 39.8% was obtained in DBD group (58.5 W, 45 min) on day 6 of anaerobic fermentation. The toxicity analysis using the ECOSAR program showed that compared to microcystin-LR, the toxicity of degradation intermediates was reduced. The contribution order of functional active substances to cyanobacteria cracking was obtained as eaq− > •OH > 1O2 > •O2− > ONOO−, while the contribution order to microcystin-LR degradation was eaq− > •OH > •O2− > 1O2 > ONOO−. DBD has the potential to be a revolutionary pretreatment method for cyanobacteria anaerobic fermentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.