Abstract
The original intention of skylights for underground ice rinks is to introduce natural light, but incoming solar radiation also affects the ice quality and ice-making energy consumption. As public sports and fitness venues of “Ice Cube”, sustainable operation of the underground ice rink with transparent skylights, has attracted much attention of architectural designers. To reduce the energy consumption without affecting indoor natural lighting, the heat transfer process of a skylight is discussed and modeled, and an advanced sunshade technology using Antimony Tin Oxide (ATO) nanofluids is proposed to filter UV/NIR and reserve visible light for indoor natural lighting. Meanwhile, two factors’ effects, including outdoor solar irradiation and mass fraction of ATO nanofluids on the energy-saving potential of an underground ice rink, are discussed, and results indicate that spectral energy of UV and NIR decreases by 23.16% and 32.99% respectively, with 20 ppm ATO nanofluids, but the energy during visible light region only reduces by 11.56%. Additionally, a high mass fraction lowers indoor solar radiation but also lifts artificial lighting energy consumption, and the mass fraction of 200 ppm is recommended as the optimal mass fraction with annual total energy consumption of 392 GJ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.