Abstract

Hydrogen fuel has the potential to mitigate the negative effects of greenhouse gases and climate change by neutralizing carbon emissions. Transporting large volume of hydrogen through pipelines needs hydrogen-specific infrastructure such as hydrogen pipelines and compressors, which can become an economic barrier. Thus, the idea of blending hydrogen into existing natural gas pipelines arises as a potential alternative for transporting hydrogen economically by using existing natural gas grids. However, there are several potential issues that must be considered when blending hydrogen into natural gas pipelines. Hydrogen has different physical and chemical properties from natural gas, including a smaller size and lighter weight, which require higher operating pressures to deliver the same amount of energy as natural gas. Additionally, hydrogen's small molecular size and lower ignition energy make it more likely to permeate through pipeline materials and seals, leading to degradation, and its wider flammability limits make it a safety hazard when leaks occur. In this study, we investigate these potential issues through simulation and technical surveys. We develop a gas hydraulic model to simulate the physical characteristics of a transmission and a distribution pipeline. This model is used throughout the study to visualize the potential impacts of switching from natural gas to hydrogen, and to investigate potential problems and solutions. Furthermore, we develop a Real-Time Transient Model (RTTM) to address the compatibility of current computational pipeline monitoring (CPM) based leak detection methods with blended hydrogen. Finally, we suggest the optimal hydrogen concentration for this model, and investigate the amount of carbon reduction that could be achieved, while considering the energy needs of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.