Abstract
One of the important characteristics of pulsar radiation is polarization. It is considered not only as a probe for recognizing the structure of a magnetic field, but also as a lighthouse for estimating spacecraft attitude via orientation information between the pulsar and the detector. Although polarization of a pulsar has been studied for decades, until recently applications to determination of spacecraft attitude have been seldom reported. This paper deals with analysis of the feasibility of applying polarization information to attitude estimation. The stability factor (SFR) and observation fluctuation factor (OFR) are introduced to analyze the stability of a pulsar’s polarized position angle. Based on European Pulsar Network (EPN) data, several simulated instances are used to demonstrate that the accuracy requirement of attitude determination can be met via polarization measurement. The SFR of a pulsar is evaluated using simulated polarization data, and the OFR is used to analyze the relationship between fluctuation extent and observation time. Simulation results show that the polarized measurement of candidate pulsars PSR B0470-28 and PSR B2319+60 reaches the specification for attitude determination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.