Abstract

Fishes can change their physiological responses when threatened by the presence of predators. Such physiological plasticity, however, usually implies costs that may impede organismal development and reproduction and reduce the ability to cope with other biotic and abiotic stresses. Here, we evaluated the growth and stress biomarker responses in sexually reversed Nile tilapia, Oreochromis niloticus, fingerlings indirectly threatened by the presence of the aquatic insect predator Belostoma anurum (Hemiptera: Belostomatidae). We also evaluated whether the presence of B. anurum would affect growth in fingerlings that received food containing the masculinizing hormone 17 α-methyltestosterone. The antioxidant responses were evaluated by measuring the activity of enzymes (e.g., superoxide dismutase, catalase, and glutathione-S-transferase). Oxidative stress biomarkers (e.g., malondialdehyde and nitric oxide) and blood glucose and lactate responses were also evaluated. Our results revealed that predator exposure did not affect growth in O. niloticus fingerlings reared in the presence or absence of the masculinizing hormone. However, sexually reversed tilapia fingerlings significantly increased not only the glucose and lactate blood levels, but also exhibited increased activities of superoxide dismutase and glutathione-S-transferases enzymes when threatened by the presence of B. anurum nymphs. Collectively, our findings indicate that despite not exhibiting reduced growth performance, sexually reversed tilapia fingerlings were physiologically stressed by the presence of the predator, which may reduce their ability to face environmental and abiotic stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.