Abstract
Robust decision making implies welfare costs or robustness premia when the approximating model is the true data generating process. To examine the importance of these premia at the aggregate level we employ a simple two-sector dynamic general equilibrium model with human capital and introduce an additional form of precautionary behavior. The latter arises from the robust decision maker s ability to reduce the effects of model misspecification through allocating time and existing human capital to this end. We find that the extent of the robustness premia critically depends on the productivity of time relative to that of human capital. When the relative efficiency of time is low, despite transitory welfare costs, there are gains from following robust policies in the long-run. In contrast, high relative productivity of time implies misallocation costs that remain even in the long-run. Finally, depending on the technology used to reduce model uncertainty, we fi nd that while increasing the fear of model misspecfication leads to a net increase in precautionary behavior, investment and output can fall.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.