Abstract

Schizophrenia patients typically exhibit prominent negative symptoms associated with deficits in extinction recall and decreased ventromedial prefrontal cortex activity (vmPFC, analogous to medial PFC infralimbic segment in rodents). mPFC activity modulates the activity of basolateral amygdala (BLA) and this connectivity is related to extinction. mPFC and BLA activity has been shown to be altered in the methylazoxymethanol acetate (MAM) developmental disruption model of schizophrenia. However, it is unknown if there are alterations in extinction processes in this model. Therefore, we investigated extinction and the role of mPFC-BLA balance in MAM rats. Male offspring of pregnant rats treated with Saline or MAM (20 mg/kg; i.p.) on gestational day 17 were used in fear conditioning (contextual/tone) and electrophysiological experiments (mPFC-BLA plasticity). No difference was observed in conditioning, extinction, and test sessions in contextual fear conditioning. However, MAM-treated rats demonstrated impairment in extinction learning and recall in tone fear conditioning. Furthermore, high frequency stimulation (HFS) of the BLA decreased spike probability in the mPFC of saline-treated rats but not in MAM rats. NMDA antagonist microinjected into the BLA disrupted extinction learning and recall in control rats, resulting in a similar deficit as that observed in MAM-treated rats. These data demonstrate extinction impairment in the MAM model that is analogous to that observed in schizophrenia patients, that was probably due to disruption in the regulation of mPFC activity by glutamatergic neurotransmission in the BLA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.