Abstract
BackgroundFear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear.MethodsActivities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined.ResultsThe majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned responses on a trial-to-trial basis.ConclusionsThese results demonstrate that Purkinje cells in the corpus cerebelli of goldfish show fear conditioning-related changes in response to a stimulus that had been emotionally neutral prior to conditioning. Unconditioned stimulus-induced climbing fibre inputs to the Purkinje cells may be involved in mediating these plastic changes.
Highlights
Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits
We examined learning-related changes in the Purkinje cells (PCs) responses to the conditioned stimulus (CS) and aimed to further elucidate how cerebellar circuits function during classical fear conditioning
The conditioned response was not timed to the unconditioned stimulus (US) but usually occurred immediately after the onset of the CS, and in extreme cases, the heartbeat was almost absent until the end of the CS
Summary
Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. We tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. It is suggested that Purkinje cells (PCs) have similar synaptic plasticity mechanisms in both mammals and fish [12]. Investigation of PC functions during classical fear conditioning should further the understanding of the neural mechanisms underlying fear learning and other emotional functions of the cerebellum
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.