Abstract

Transition metal aluminides in their coating form are currently being explored in terms of resistance to oxidation and mechanical behavior. This interest in transition metal aluminides is mainly due to the fact that their high Al content makes them attractive for high-temperature applications. This is also a reason to study their resistance to wear; they may be suitable for use in applications that produce a lot of wear in aggressive environments, thus replacing established coating materials. In this study, the microstructure, microhardness, and wear and oxidation performance of FeAl and NbAl3 coatings produced by high-velocity oxy-fuel spraying are evaluated with two main aims: (i) to compare these two coating systems—a commonly studied aluminide (FeAl) and, NbAl3, an aluminide whose deposition by thermal spraying has not been attempted to date—and (ii) to analyze the relationship between their microstructure, composition and properties, and so clarify their wear and oxidation mechanisms. In the present study, the higher hardness of niobium aluminide coatings did not correlate with a higher wear resistance and, finally, although pesting phenomena (disintegration in oxidizing environments) were already known of in bulk niobium aluminides, here their behavior in the coating form is examined. It was shown that such accelerated oxidation was inevitable with respect to the better resistance of FeAl, but further improvements are foreseen by addition of alloying elements in that alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call