Abstract

Ensuring the safety of electric vehicles is paramount, and one critical concern is the potential for hazardous hydrogen fuel leaks caused by the degradation of Proton-Exchange Membrane Fuel Cell (PEMFC) gasket materials. This study employs advanced techniques to address this issue. We leverage Finite Element Analysis (FEA) to rigorously assess the suitability of gasket materials for PEMFC applications, focusing on two crucial conditions: ageing and tensile stress. To achieve this, we introduce a comprehensive “dual degradation framework” that considers the effects of contact pressure and von Mises stress. These factors are instrumental in evaluating the performance and durability of Liquid Silicon Rubber (LSR) and Ethylene Propylene Diene Monomer (EPDM) materials. Our findings reveal the Yeoh model as the most accurate and efficient choice for ageing simulations, boasting a minimal Mean Absolute Percentage Error (MAPE) and computational time of just 0.27 s. In contrast, the Ogden model, while accurate, requires more computational resources. In assessing overall model performance using MAE, Root Mean Square Error (RMSE), and R-squared metrics, both LSR and EPDM materials proved promising, with LSR exhibiting superior performance in most areas. Furthermore, our study incorporates uniaxial tensile testing, which yields RMSE and MAE values of 0.30% and 0.40%, respectively. These results provide valuable insights into material behaviour under tensile stress. Our research underscores the pivotal role of FEA in identifying optimal gasket materials for PEMFC applications. Notably, LSR is a superior choice, demonstrating enhanced FEA modelling performance under ageing and tensile conditions. These findings promise to significantly contribute to developing safer and more reliable electric vehicles by advancing gasket material design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.