Abstract

This paper deals with the feasibility study of using existing biomaterials like titanium alloy and the collagen-reinforced polymer matrix composite for ankle implant application through FEA analysis. The ankle joint is the important joint in the human body that experience maximum compressive stresses and undergoes maximum deformation. It must evaluate properties like stress concentration, deformation zone, and material behavior. The analysis was carried out in ANSYS Workbench with different loading conditions, for instance, normal walking and sprinting. The analysis showed that both the Ti-6Al-4V and the 30% collagen-reinforced PMC exhibited minimum stresses, but since the density of Ti-6Al-4V is more than 30% collagen-reinforced PMC. Even though the stress developed in Ti-6Al-4V is within the yield stress, the density is still not close enough to the density of bone. Collagen-reinforced PMC with a 30% density close to the bone is recommended as an implant material for better life and performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call