Abstract

Rational design and preparation of a multiphase electrocatalyst for hydrogen evolution reaction (HER) has become a hot research topic, while applicable and pH versatility of vanadium tetrasulfide (VS4) and heptairon octasulfide (Fe7S8) composites have rarely been reported. Here, the facile topological sulfide self-template sacrifice method using FeV bimetallic MOFs is designed to obtain Fe7S8 coupled with VS4 heterostructures, enhancing the electron precipitation in the catalysts and attracts electrons to migrate. According to DFT simulations, the electronic coupling at the atomic orbital level and the modulation of interfacial electrons among various interfaces play a crucial role in enhancing the intermediate state process of the hydrogen evolution reaction (HER) across the entire pH range, promoting the optimal d-band centroid value (εd). Reassuringly, the prepared 3D Fe7S8/VS4 electrodes possessed excellent performances of η10 = 53 mV, η10 = 135 mV and η10 = 38 mV in a conventional three-electrode configuration in a 1 M KOH, 1 M Na2SO4, and 0.5 M H2SO4, and the stabilized currents can all be maintained for 48 h. This innovative design of in situ heterostructured materials constructed from dual transition metal sulfides provides inspiring ideas for the preparation of all-pH catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.