Abstract

An efficient and environmentally friendly oxidation process for the one-pot preparation of oxime, imine and carbonyl compounds through alcohol oxidation in the presence of H2O2 and/or O2 have been developed by a melamine-Mn(III) Schiff base complex supported on Fe3O4@SiO2Cl nanoparticles, named as Fe3O4@SiO2@Im[Cl]Mn(III)-complex nanocomposite, at room temperature. Direct oxidation of alcohol to carboxylic acid was performed using the catalyst in the presence of molecular O2 at room temperature in a different approach. The oxidation products were obtained with excellent yields and high TOFs. The properties of the catalyst were characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis (C, H, N), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), inductive coupled plasma (ICP), cyclic voltammetry (CV), nuclear magnetic resonance (1H &13C NMR), vibration sample magnetometer (VSM), Brunauer– Emmett–Teller (BET) and differential pulse voltammetry (DPV) analyses. The mechanism of the oxidation processes was investigated for the both H2O2 and O2 oxidants. The role of the imidazolium moiety in the catalyst as a secondary functionality was investigated. Chemoselectivity behavior of the catalyst was studied by some combinations. The catalyst could be recycled from the reaction mixture by a simple external magnet and reused for several times without any considerable reactivity loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call