Abstract

Novel sulfonated carbon-coated magnetic nanoparticles (SCCMNPs; Fe3O4@C@OSO3H) were designed, synthesized, characterized, and applied as an efficient nanocatalyst for green synthesis of coumarin derivatives through Pechmann condensation. The Fe3O4@C@OSO3H was manufactured through a simple and inexpensive two-step procedure and characterized by FTIR, EDX, XRD, SEM, TEM, DLS, VSM, and TGA techniques. It was identified as an efficient heterogeneous catalyst in the Pechmann condensation of phenol derivatives and β-ketoesters, leading to high-yield coumarin derivatives under solvent-free conditions. The Fe3O4@C@OSO3H removed after reaction finishing point by an external magnet, and it was reused fifteen times at the same conditions. Besides, theoretical studies were carried out using B3LYP/6-311++G(d,p) to more consideration of the reaction mechanism. The study of the frontier molecular orbitals, NBO atomic charges, molecular electrostatic potential of reactants, as well as Pechmann condensation mechanism was known very useful in suitable reactant choice. The reaction was performed through the electrophilic attack, dehydration, and trans-esterification, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.