Abstract

In-situ catalytic technology for heavy oil reservoirs is widely regarded as one of the most promising methods for heavy oil extraction. However, its large-scale application faces significant challenges due to the lack of efficient stable catalysts, and issues related to the dispersion of catalysts during the injection process. This study introduces a modified nanomagnetic sphere, Fe3O4/AM-PAA/Ni, with catalytic and surface-active properties. With a 1 % mass fraction of Fe3O4/AM-PAA/Ni and 1 % tetrahydronaphthalene (hydrogen donor) at 180°C, heavy oil viscosity dropped by 94.21 %, and asphaltenes and resin reduced by approximately 20 %. Core flooding and alternating magnetic field experiments demonstrated superior dispersion and heating effects for Fe3O4/AM-PAA/Ni nanoparticles compared to traditional Fe3O4. Mechanism analysis revealed that the unpaired electrons and d-orbitals on Fe3O4/AM-PAA/Ni’s transition metals facilitated hydrocarbon chain breakdown and interaction with heteroatoms, while nanoscale nickel enhanced catalytic activity for C-S bond cleavage, further reducing oil viscosity. The amphiphilic polymers on the surface of magnetic nanospheres significantly enhanced the dispersion of the catalyst in heavy oil, increasing the reaction contact area and thereby improving the catalytic performance. This research not only offers vital theoretical insights and practical strategies for efficient heavy oil extraction but also paves the way for advancements in reservoir in-situ modification technologies, showcasing significant application potential and academic value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.