Abstract

Fe3O4/TiO2 core/shell nanotubes are fabricated via a three-step process. α-Fe2O3 nanotubes are first obtained, and α-Fe2O3/TiO2 core/shell nanotubes are subsequently fabricated using Ti(SO4)2 as a Ti source by a wet chemical process. The thickness of the amorphous TiO2 shell is about 21 nm. After a H2 deoxidation process, the amorphous TiO2 layer changes into crystalline structures composed of TiO2 nanoparticles with an average diameter of 2.5 nm, and its thickness is decreased to about 18 nm. At the same time, α-Fe2O3 transforms into cubic Fe3O4. Consequently, crystalline Fe3O4/TiO2 core/shell nanotubes can be fabricated through the process above. The measurements of the magnetic properties demonstrate that the Fe3O4/TiO2 core/shell nanotubes exhibit ferromagnetic behavior at room temperature, and the Verwey temperature is about 120 K. The eddy current effect is largely reduced and the anisotropy energy is improved significantly for the core/shell nanotubes due to the presence of the TiO2 shells. The max...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.