Abstract

In the present study, silica-coated magnetic nanoparticles functionalized with vancomycin (Fe3O4@SiO2@VAN) were synthesized. The Fe3O4@SiO2@VAN nanocomposite was used as a sorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) from environmental water, followed by GC-MS. The nanocomposite was characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and nitrogen sorption. Various experimental parameters were optimized, including extraction condition and desorption condition. Results show that Fe3O4@SiO2@VAN combined the advantages of nanomaterials and magnetic separation technology, showing excellent dispersibility and high selectivity for PAHs in environmental water sample. Under the optimal extraction conditions, an analytical method was established with the sensitive limit of detection (LOD) of 0.03–0.16 μg L−1. The method was successfully applied for the analysis of environmental water samples. The relative standard deviations (%) were in the range of 0.50–12.82%, and the extraction recovery (%) was in the range of 82.48% and 116.32%. MSPE-coupled gas chromatography–mass spectrometry quantification of PAHs is an accurate and repeatable method for the monitoring of PAH accumulation in environmental water samples. It also provides an effective strategy for the tracing and quantification of other environmental pollutants in complex samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call