Abstract

Herein we report the first example of Fe3O4 nanoparticles (FNPs) being used as single-matrix solid-phase dispersion (MSPD) adsorbents for the extraction of 30 representative pesticides from vegetables. This study was aimed at analyzing the extracted samples using ultrahigh-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). Various condition parameters, such as the eluent, volume of the eluent, and amount of FNPs were optimized to achieve good sensitivity and precision for the elution and extraction of the analytes. The developed method was validated using matrices consisting of eight vegetables (lettuce, cucumber, carrot, tomato, pepper, shallot, Chinese flowering cabbage, and cabbage) spiked with 30 pesticides at concentrations of 0.01, 0.1, and 1.0 mg/kg. The recoveries of the 30 pesticides (organophosphorus, triazole, carbamate, nicotine, amide, and other different structures of pesticides) were in the range 71.0–110.8% (n = 5) (except those of prothioconazole and dinotefuran), with relative standard deviations lower than 13.5% in all the matrices under optimal conditions. The matrix effects were observed by comparing the slope of the matrix-matched standard calibration curve with that of the solvent. However, the matrix effects of the eight vegetables did not show evident regularities. For pepper, tomato, and shallot, a sizable number of pesticides (24, 21, and 21, respectively) showed suppressive matrix effects. On the other hand, for cucumber, Chinese flowering cabbage, and cabbage, a good number of pesticides (19, 18, and 15, respectively) showed negligible matrix effects. Furthermore, for carrot matrices, 21 pesticides showed a matrix enhancement effect. Excellent linearity was achieved at pesticide concentrations of 0.01–1.0 mg/L, and the limits of quantification (LOQ) for the developed method reached 0.01 mg/kg (except that for dinotefuran, which was 0.1 mg/kg), based on the spiked test. The developed method was successfully employed in the analysis of real samples in Nanning, China, and three pesticide residues (halosulfuron methyl, tebuconazole, and azoxystrobin) were commonly detected in vegetable samples. In the present study, a reliable method-validation performance and excellent cleanup effects were observed by using the modified MSPD method consisting of the FNPs in the cleanup step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call