Abstract
AbstractMagnetic Fe3O4 nanoparticles have attached attention in bone tissue engineering because of their superior magnetism and great biocompatibility. However, some disadvantages such as the potential risk of agglomeration impair their applications. Here, we proposed a hybrid magnetic nanocomposite microgel by the integration of Fe3O4 nanoparticles and digital lighting processing (DLP) three‐dimensional (3D) printing technology. The 3D‐printed microgels could be precisely customized by printing the mixture of gelatin methacryloyl (GelMA) solution and polydopamine‐coated Fe3O4 nanoparticles, in which polydopamine decoration improved the hydrophilicity and distribution of the incorporated Fe3O4. The degradable microgels could be injected through a 22‐G needle while retaining their original shape after injection. Interestingly, the addition of Fe3O4 nanoparticles into GelMA solution displayed improved printing accuracy. Moreover, these magnetic microgels were biocompatible in vitro and in vivo. After induction within osteogenic medium, addition of nanoparticles upregulated the osteogenic gene expression of rat bone mesenchymal stem cells (BMSCs). In a word, this work provides a magnetic microplatform, which shows great potential in bone tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.