Abstract

In this study, we found that Fe3O4 promoted horizontal gene transfer (HGT), but when Fe3O4 was composited with MoS2, the Fe3O4@MoS2 nanocomposite interacting with bacteria significantly blocked the HGT in the conjugation system. qPCR was used to analyze the expression of genes belonging to the chromosome and plasmid in the conjugation system. Results demonstrated that Fe3O4@MoS2 inhibited conjugation by promoting the expression of the global regulatory gene (trbA) and inhibiting the expression of conjugative transfer genes involved in mating pair formation (traF, trbB), DNA replication (trfA), and porins (outer membrane protein (omp) A and ompC). All of these genes are related to the permeability of the cell membrane, except for trfA. The results showed that Fe3O4@MoS2 interacted with bacteria to decrease their permeability against exogenous DNA. MoS2 may play an essential role in the HGT-inhibiting activity of Fe3O4@MoS2. This study highlights the diverse biological properties of nano-materials and provides clues for nano-scientists to develop environmentally friendly materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call