Abstract

Fe3O4/CoFe2O4 core/shell nanoparticles with varying shell thickness were fabricated by seed-mediated growth via thermal decomposition method. Ligand exchange process using poly(maleic anhydride-alt-1-octadecene) (PMAO) was performed to prepare the aqueous magnetic fluids from the as-synthesised nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Quantum Design PPMS VersaLab were utilised to characterise morphological and magnetic properties of the sample. XRD results showed that all the particles were single phase with spinel structure and the average crystallite size in the range of 11–17 nm. All particles were spherical in TEM images with similar size compared to results calculated from XRD. Magnetic measurements were performed at different temperatures (50 − 300 K) at 30 kOe. The result showed that the saturation magnetisation (M s) and coercivity (H C) were significantly increased with the formation of hard magnetic shell with varying thickness. The dynamic light scattering (DLS) analysis presented a narrow distribution and zeta potential of −16 to −35 mV, indicating a good stability of the ferrofluids. The cytotoxicity of the FOC3/PMAO ferrofluid, which has the highest SAR value of 372.02 W g−1, was tested on Hep-G2 cell line at different concentrations from 10 to 100 μg ml−1. Less than 30% of the cell was inhibited, indicating that the FOC3/PMAO particles have low toxicity at these tested concentrations. Thus, these as-synthesised core/shell nanoparticles with uniform particle size, high saturation magnetisation, good stability and five-time increased specific absorption rate (SAR) compared to the Fe3O4 core nanoparticles are very promising in hyperthermia and magnetic resonance imaging (MRI) applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.