Abstract
Superparamagnetic iron oxide nanoparticles with high magnetization strength and good biological safety have been widely used as magnetic resonance imaging (MRI) contrast agents for tumors. However, the accuracy of tumor diagnosis is still low due to the lack of tumor targeting and the interference signals from normal tissues. Endogenous substances in tumor (such as high levels of GSH and pH) stimuli-responsive contrast agents could offer higher sensitivity for tumor diagnosis. Herein, based on the characteristic of overexpression of GSH in tumors, we propose an ultra-small Fe3O4 assembly as an endogenous GSH responsive MRI contrast agent. The ultra-small superparamagnetic Fe3O4 are bonded to the crosslinker cystamine to synthesize Fe3O4 nanoclusters, which exhibit a T2 imaging effect. When the contrast agent reaches the tumor tissue, the disulfide bond in cystamine is induced by GSH to break, the Fe3O4 nanoclusters are disassembled into ultra-small Fe3O4 nanoparticles, and the relaxation signal changes from T2 to T1, which is helpful for accurate diagnosis of tumors. In vivo experiments have shown that Fe3O4 nanoclusters can rapidly respond to overexpressed GSH in tumor sites for T2/T1 switchable imaging. This work not only designed an endogenous GSH responsive platform through simple synthesis methods, but also improved the accuracy of tumor diagnosis through the transformation of T2/T1 MRI signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.