Abstract

The presence of higher concentrations of heavy metals in water affects its quality with a concomitant adverse effect on its users thus their removal is paramount. A novel adsorbent, PN-Fe3O4-IDA derived from the chemical modification of peanut husk (a low-cost agricultural biomass produced in significant quantities globally) using magnetic nanoparticles (Fe3O4) and iminodiacetic acid was utilized for the remediation of heavy metals in aqueous solution. Analytical techniques vis-à-vis the Fourier-Transform Infrared, Scanning Electron Microscope, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy and X-ray Diffraction were applied for the characterization of PN-Fe3O4-IDA. Results from the characterization studies showed that PN-Fe3O4-IDA possessed a mesoporous structure, a heterogeneous surface and functional groups such as carboxylic acid and a tertiary nitrogen atom which enhanced its adsorption capacities as well as magnetic properties which ensured its easy removal from the solution using a magnet. The maximum uptake of Pb and Cu onto PN-Fe3O4-IDA was 0.36 and 0.75mmolg-1 (at 318K) respectively with the chemisorption process being the major reaction pathway for the processes. The synthesized adsorbent exhibits significant adsorption capacity for the selected pollutants as well as some unique features which promotes its use as an adsorbent for wastewater remediation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call