Abstract
The persistence of pharmaceutical and personal care products (PPCPs) such as norfloxacin (NFX) poses a serious threat to the water environment, and the development of efficient and cost-effective advanced oxidation catalysts is an important step toward resolving this issue. Herein, Fe and N co-doped graphene (FeNGO) was synthesized from graphene oxide (GO), urea, and iron salt via simple impregnation pyrolysis, and applied for activating peroxymonosulfate (PMS) to degrade NFX. FeNGO possessed a two-dimensional porous sheet structure and was rich in defects, nitrogen species, and active sites. Compared with the control catalyst doped with N or Fe alone, FeNGO/PMS system showed the best degradation performance with 97.7% removal of NFX after 30 min, the rate constant was 7.1 and 1.7 times than that for NGO and FeGO, respectively. Fe3N was the main active site of FeNGO, and it is confirmed that singlet oxygen (1O2) and superoxide radical (O2•-) were the primary oxidation active species (ROS) during NFX degradation. The formation of 1O2 came from the transformation of O2•- and PMS decomposition. FeNGO showed strong pH adaptability, and also exhibited stale degradation performance in saliferous water matrices. It is believed that this work will offer theoretical and practical guidance for PMS activation by non-radical pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.