Abstract

The aims of this work were to produce nanocrystalline powder by mechanical alloying of FeTi2–Al–C powder mixture in a high energy ball mill and to study the phase transformation that took place during 20 h milling time. The microstructure and the phase transformations in the powder during milling were examined as a function of milling time and heat treatment. The phases of the product were evaluated by X-ray diffraction technique. The microstructural evolution during mechanical alloying was analysed using SEM. The results obtained showed that high energy ball milling, as performed in this work, led to the formation of a bcc phase identified as Fe(Al) solid solution and TiCx after 2 h milling and nanocrytalline AlFe3 and TiCx after 5 h milling. The increase in the milling time resulted in the formation of AlFe3Cx. By heat treatment of the body after 20 h milling at 1000°C, AlFe3Cx disappeared, showing that this phase is unstable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call