Abstract

The effect of iron oxide nanoparticle (NP) at four concentrations (0, 30, 60 and 90 ppm) and salinity at three levels (0, 50 and 100 mM) were investigated on rosmarinic acid (RA) production in 5-week-old Moldavian balm (Dracocephalum moldavica L.) plants. Salinity and spraying iron oxide NPs significantly affected tyrosine (Tyr), phenylalanine (Phe) and proline (Pro) amino acids content, Phenylalanine Ammonia-Lyase (PAL), Tyrosine Aminotransferase (TAT) and Rosmarinic Acid Synthase (RAS) genes expression levels, RA content, Polyphenol Oxidase (PPO), PAL and Superoxide Dismutase (SOD) activities, malondialdehyde (MDA) content and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. PAL, TAT and RAS genes expression rate and content of RA were enhanced in Moldavian balm plants exposed by NaCl + NPs. The results of high performance liquid chromatography (HPLC) revealed that simultaneous application of 50 mM NaCl and 90 ppm NPs increases the RA content in leaf by 81.15% as compared to control plants. The Tyr and Phe contents decreased in Moldavian balm plants exposed to salt stress. Application of NPs had a positive effect on the content of these amino acids. Proline content increased under salinity stress and application of iron NPs induced a significant increase in the Pro content of leaf. The results revealed that PAL, PPO and SOD enzymes activities increased under salinity conditions. The highest activity of PPO and SOD was observed in 100 mM NaCl + 60 ppm NPs treatment. Simultaneous application of 100 mM NaCl + 90 ppm NPs increased the MDA content and DPPH radical scavenging activity compared to control plants. It can be concluded that the application of appropriate levels of NPs moderates the effect of salinity stress in D. moldavica L. and results in an increased amount of RA compared to control plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call