Abstract

Ferrate (Fe(VI), FeO42-) has been widely used in the degradation of micropollutants with the advantages of high redox potential, no secondary pollution and inhibition of disinfection byproducts. However, the low transformation of Fe(V) and/or Fe(IV) by Fe(VI) and incomplete mineralization of pollutants limit their application. In this work, we designed a photo electric cell with TiO2 nanotubes (TNTs) and Pt serving as the anode and cathode to enhance the utilization of Fe(VI) (Fe(VI)-TNTs system). TNTs accelerated the generation of •OH via hVB+ oxidation of OH- and photogenerated electrons at Pt boosted the transformation of Fe(VI) to Fe(V) and/or Fe(IV), resulting in a 22.2 % enhancement of chloroquine (CLQ) removal compared to Fe(VI) alone. The results from EPR and quenching tests showed that Fe(VI), Fe(V), Fe(IV), •OH, O2•- and hVB+ coexisted in the Fe(VI)-TNTs system, among which Fe(V) and Fe(IV) were testified as the primary reactive substances accounting for 59 % of CLQ removal. The performance tests and recycling tests demonstrated that the Fe(VI)-TNTs system maintained excellent performance in an authentic water environment. The plausible degradation pathway of CLQ oxidized in the Fe(VI)-TNTs system was proposed with nine identified oxidation products via N-C cleavage, electrophilic addition and carboxylation processes. Based on the ECOSAR calculation, the constructed reaction system allowed a decrease in acute and chronic toxicity. Our findings provide a highly efficient and cost-effective strategy to enhance Fe(VI) application for micropollutant degradation in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call