Abstract

Abstract Finite Element (FE) tire models are increasingly being used for tire design, vehicle design studies and dynamic investigations. Such tire models have the inherent advantage of being able to cover a wide range of tire design variables (such as detailed tire geometry and material composition), in addition to an extensive coverage of operational conditions (such as tire load, inflation pressure and driving speed). A variety of road input disturbances can also be considered. This paper presents a three-dimensional (3D) Finite Element tire model developed using ABAQUS, a commercial finite element code for use in the development of new tire designs and simulation of vehicle dynamics. Of particular interest are rolling tire output responses, such as lateral forces and self-aligning moment generated due to steering input during vehicle maneuvering and vibration responses to road disturbances. The model will also be applicable in investigating other tire design issues, such as the heat generated in the carcass of the rolling tire. This can present particular problems in heavily loaded tires, for example aircraft tires during take-off. This model should enable the rapid development of new tire designs to satisfy specific requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.