Abstract

This paper describes a study of laser generated ultrasonic waves in an 2-layer elastic, isotropic biomaterial model, in order to establish a modelling technique to simulate the thermoelastic response of high-power short pulse laser beams in human skin. The theory proposed in this paper takes into consideration the fundamental understanding of the laser/material interface. A finite element model using the commercial finite element code ANSYS is used to study the effects of laser pulse duration and energy flux contribution to the surface waves. The simulation comprises a set of boundary conditions that approximate a heat flux point source located on top of the surface of the material. Because of the time scale of interest, the elastic effects do not feed back into the thermal problems, so that a sequential coupled-field analysis was performed where the thermal and elastodynamic fields are uncoupled and treated separately. The initial finite element analysis involves a transient thermal analysis using a heat flux with Gaussian spatial variation to simulate the laser pulse heating. The results from the thermal analysis were read and applied to the structural analysis where the out-of-plane displacements histories are analyzed in the skin model with varying thicknesses

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.