Abstract

A Fe–3wt pctSi alloy was gas nitrided to study the effect of Si on the Fe nitride formation. Both ε-Fe3N1+x and γ′-Fe4N were observed at nitriding conditions only allowing to form single-phase γ′ layers in pure α-Fe. During short nitriding times, ε and γ′ simultaneously grow in contact with Si-supersaturated α-Fe(Si). Both nitrides almost invariably exhibit crystallographic orientation relationships with α-Fe, which are indicative of a partially displacive transformation of α-Fe being involved in the initial formation of ε and γ′. Due to Si constraining the Fe nitride growth, such transformation mechanism becomes highly important to the nitride layer formation, causing α-Fe-grain-dependent variations in the nitride layer morphology and thickness, as well as microstructure refinement within the nitride layer. After prolonged nitriding, α-Fe is depleted in Si due the pronounced precipitation of Si-rich nitride in α-Fe. The growth mode of the compound layer changes, now advancing by conventional planar-type growth. During nitriding times of 1 to 48 hours, ε exists in contact with the NH3/H2-containing nitriding atmosphere at a nitriding potential of 1 atm−1/2 and 540 °C, only allowing for the formation of γ′ in pure Fe, indicating that Si affects the thermodynamic stability ranges of ε and γ′.

Highlights

  • THE design of Fe-base alloys often requires additions of Si

  • Very fine X precipitates form in a-Fe upon short nitriding times, which are in line with the absence of visible X precipitates in a-Fe after 1 to 4 hours in the current work

  • electron backscatter diffraction (EBSD) has revealed the distribution of Fe nitrides in the compound layer

Read more

Summary

Introduction

THE design of Fe-base alloys often requires additions of Si. Ferritic and pearlitic cast irons contain up to 3 wt pct Si to promote the formation of graphite during solidification.[1]. Understanding the role of Si in the nitride formation is required to tailor nitriding processes of the above steels and cast irons

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.