Abstract

The selective electrochemical reduction of CO2 to CO is a promising solution for the design of carbon-neutral, sustainable processes. Achieving a highly selective single reduction product is still challenging because of the energetically favorable competing hydrogen evolution reaction. We report the fabrication of N-doped sponge-like porous graphitic carbon structures embedded with Fe nanoparticles (Fe@NPC) via the pre-modification of a metal-organic framework (IRMOF-3(Zn)) with carboxyferrocene, followed by pyrolysis. The as-prepared Fe@NPC exhibited a 96.4% CO Faradaic efficiency at –0.5 VRHE and good stability. The exceptional CO2 reduction performance is attributed to the unique structure of the composite catalyst, which provides abundant hierarchical pores that increase CO2 adsorption and mass transfer, and active Fe sites that synergistically accelerate the kinetics of CO generation. The in situ attenuated total reflectance-Fourier transform infrared analysis provided proof of the improved ability of Fe@NPC to accumulate the crucial intermediate *COOH compared with other pyrolyzed porous carbons. Fe@NPC was used in a Zn-CO2 battery that delivered a maximum power density of 3.0 mW cm–2, evidencing its potential for application in energy-converting devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call