Abstract
ABSTRACT Proton activity at the electrified interface is central to the kinetics of proton-coupled electron transfer (PCET) reactions in electrocatalytic oxygen reduction reaction (ORR). Here, we construct an efficient Fe3C water activation site in Fe-N co-doped carbon nanofibers (Fe3C-Fe1/CNT) using an electrospinning-pyrolysis-etching strategy to improve interfacial hydrogen bonding interactions with oxygen intermediates during ORR. In situ Fourier transform infrared spectroscopy and density functional theory studies identified delocalized electrons as key to water activation kinetics. Specifically, the strong electronic perturbation of the Fe–N4 sites by Fe3C disrupts the symmetric electron density distribution, allowing more free electrons to activate the dissociation of interfacial water, thereby promoting hydrogen bond formation. This process ultimately controls the PCET kinetics for enhanced ORR. The Fe3C-Fe1/CNT catalyst demonstrates a half-wave potential of 0.83 V in acidic media and 0.91 V in alkaline media, along with strong performance in H2-O2 fuel cells and Al-air batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.