Abstract

To achieve the US Department of Energy 2018 target set for platinum-group metal-free catalysts (PGM-free catalysts) in proton exchange membrane fuel cells, the low density of active sites must be overcome. Here, we report a class of concave Fe–N–C single-atom catalysts possessing an enhanced external surface area and mesoporosity that meets the 2018 PGM-free catalyst activity target, and a current density of 0.047 A cm–2 at 0.88 ViR-free under 1.0 bar H2–O2. This performance stems from the high density of active sites, which is realized through exposing inaccessible Fe–N4 moieties (that is, increasing their utilization) and enhancing the mass transport of the catalyst layer. Further, we establish structure–property correlations that provide a route for designing highly efficient PGM-free catalysts for practical application, achieving a power density of 1.18 W cm−2 under 2.5 bar H2–O2, and an activity of 129 mA cm−2 at 0.8 ViR-free under 1.0 bar H2–air. Iron single-atom catalysts are among the most promising fuel cell cathode materials in acid electrolyte solution. Now, Shui, Xu and co-workers report concave-shaped Fe–N–C nanoparticles with increased availability of active sites and improved mass transport, meeting the US Department of Energy 2018 target for platinum-group metal-free fuel cell catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.